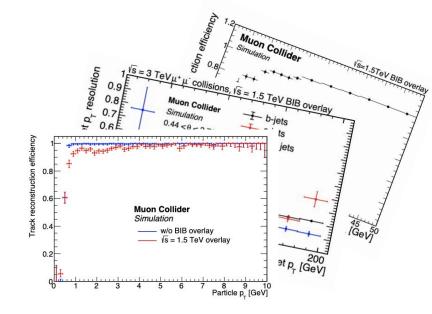
Framework to do

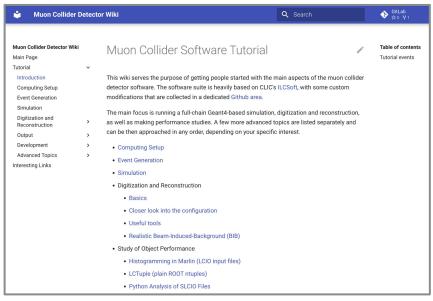
From 3 to 10 TeV

Federico Meloni (DESY), with many thanks to all who, directly or indirectly, provided inputs

Muon Collider Physics and Detector workshop FNAL, 16/12/2022

What's this talk about?


Our full simulation framework made giant leaps in the past few years

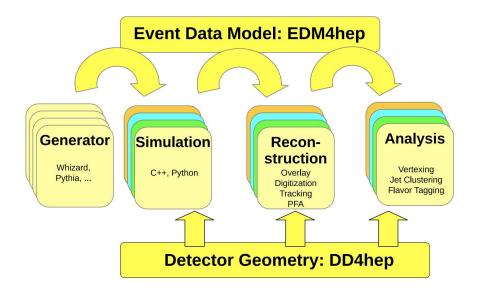

Snowmass21: shown ~LHC-level performance for most physics objects

We should not stop there

How can you help?

This talk includes a non-exhaustive list of ideas. Get in touch for more!

Recommended entry point https://mcdwiki.docs.cern.ch/tutorial/

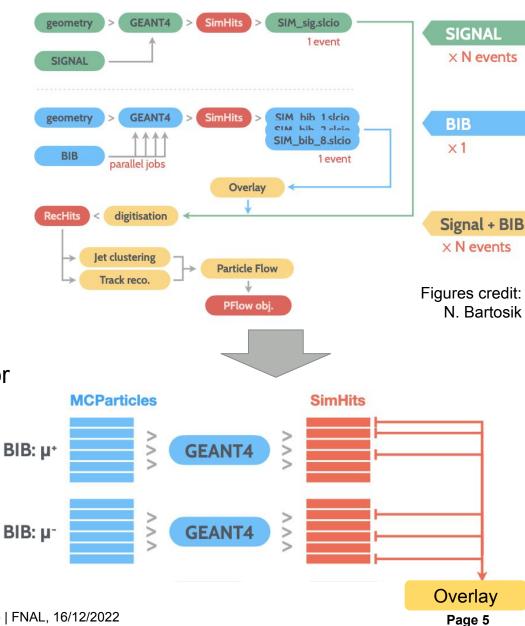

Core framework changes

Migrating to key4HEP

Maybe the "single" most important (software) change to do in the near term

- Migrate to modern software framework and interfaces
- Support for multi-threaded processing (will require writing thread-safe algorithms)
- Adopted by other future colliders, but still flexible (i.e. EDM changes)
- We can't afford to branch off

Work is already ongoing, but it's a significant effort and there are many tasks to be picked up.



	Marlin	Gaudi	
language	c++	C++	
working unit	Processor	Algorithm	
configuration language	XML	Python	
set up function	init	initialize	
working function	processEvent	execute	
wrap up function	end	finalize	
Transient data format	LCIO	anything	
Executable	Marlin	k4run	

BIB generation and simulation

The production of BIB files from MARS15 for the overlay is currently limited to few super-experts

- FLUKA-based pipeline in development
- Standardize workflow and include necessary software in docker images
- Document or automate procedure to lower the barrier for entry
- Develop of random overlay of BIB-batches from FLUKA

BIB overlay and beyond

Realistic digitisation of tracker modules available

To save CPU time, design direct overlay of digitised hits

Similar opportunity for calorimeters - develop libraries of pre-digitised (i.e. time-integrated) BIB contributions

BIB overlays for fast simulation (Delphes)?

 Build libraries of high-level objects to overlay directly in the fast simulation e.g., combinatorial BIB tracks, BIB jets ...

Muon detectors as trackers

For historical (?) reasons, muon detectors are implemented in the framework as calorimeters

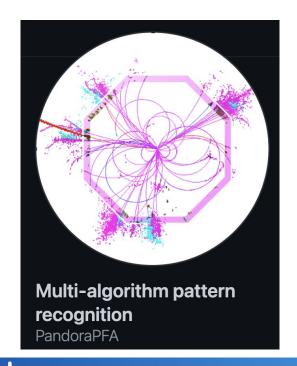
This makes it hard to run tracking algorithms to reconstruct muons

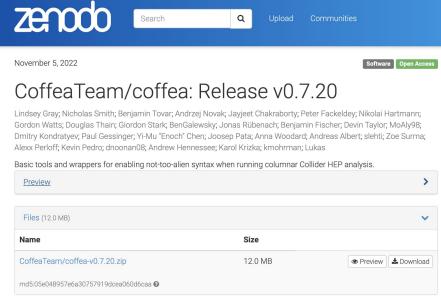
Reconstruction has to go through PandoraPFA reducing flexibility/interpretability of results

RUN: -1 DETECTOR: MuColl_v1 COLLECTIONS: (see below) ////////////////////////////////////					
COLLECTION NAME	COLLECTION TYPE	NUMBER OF ELEMENTS			
================================ ECalBarrelCollection	SimCalorimeterHit	 1181			
ECalEndcapCollection	SimCalorimeterHit	1			
HCalBarrelCollection	SimCalorimeterHit	52			
HCalEndcapCollection	SimCalorimeterHit	226			
HCalRingCollection	SimCalorimeterHit	18			
InnerTrackerBarrelCollection	SimTrackerHit	6			
InnerTrackerEndcapCollection	SimTrackerHit	0			
MCParticle	MCParticle	19			
OuterTrackerBarrelCollection	SimTrackerHit	4			
OuterTrackerEndcapCollection	SimTrackerHit	5			
VertexBarrelCollection	SimTrackerHit	11			
VertexEndcapCollection	SimTrackerHit	4			
YokeBarrelCollection	SimCalorimeterHit	0			
YokeEndcapCollection	SimCalorimeterHit	21			

Tools and quality of life

Pandora PFA


- At core of the reconstruction of most of our high-level objects
- Systematic lack of experts!

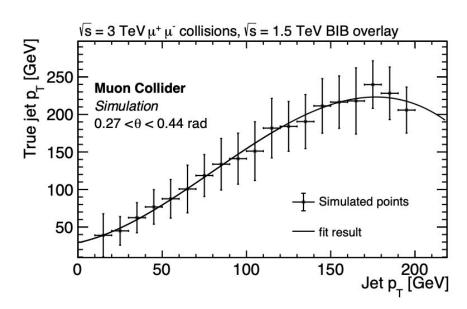

Columnar analysis

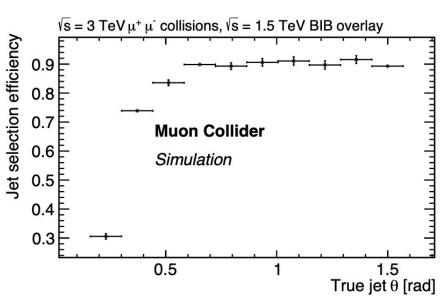
- FCC-analysis <u>framework</u> uses
 RDataFrame for event processing
- Processing LCTuples with <u>coffea</u> (Lindsey Gray offered help during the tutorial, thanks!)

Documentation

 Small contributions can make a difference

Knowledge transfer from the LHC


Jets

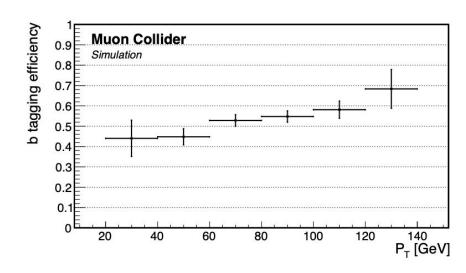

Obvious place where to transfer knowledge from LHC

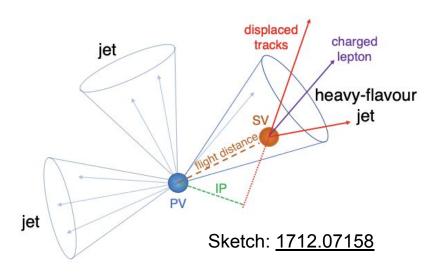
- Pile-up (BIB) subtraction
- Jet energy calibration
- Reconstruction of boosted objects / substructure techniques

BIB rejection based on tracks introduces inefficiencies where tracking performance still suboptimal

- Develop more sophisticated criteria
- Study simple adjustments, e.g., setting an upper energy threshold to the BIB cleaning

Go beyond SV-based flavour tagging


Currently relying on robust flavour tagging algorithm based on the presence of secondary vertices


Need to exploit all the information that is available

- Track impact parameter
- Charged leptons from meson decays

Move away from tracking inputs based on double-layer filtering

Develop your favourite machine learning approach

Taus

Slide intentionally left blank (everything needs to be done!)

Defining standards

Some of you might be interested in simply evaluating the sensitivity of your favourite physics channel using the state-of-the-art simulation

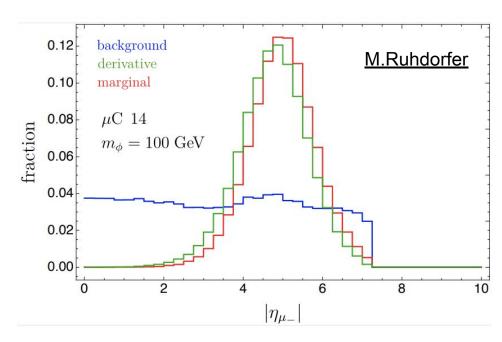
- Started work on defining standard working points for tracks (see <u>N.Bruhwiler's talk</u>)
- Need to do the same for all other reconstructed physics objects

Greatly lower the barrier of entry for performing physics studies with full simulation

Combining with track filter

3				
	Fake tracks/event	Average efficiency (small sample)		
Unfiltered	72,765	100%		
Track filter only	2,887	96%		
Both track and cluster filter (loose)	2,080	95%		
Both track and cluster filter (tight)	1,703	95%		

N.Bruhwiler


Forward detectors and physics

The forward region

Instrumenting the forward region (down to 0.1 degrees from the beam axis) would strongly boost the physics potential of a muon collider

- Need to design the detector (technology? strategy?)
- Investigate integration with accelerator (focusing magnets?)
- Insert detector in simulation
- Design dedicated reconstruction algorithms
- Evaluate impact on physics

Bonus interplay with luminosity measurements!

Removing forward tagging mainly affects κ_Z :

- $1.2\% \rightarrow 5.1\%$
- ullet 0.34% ightarrow 1.4% M.Forslund

The ultra-forward region

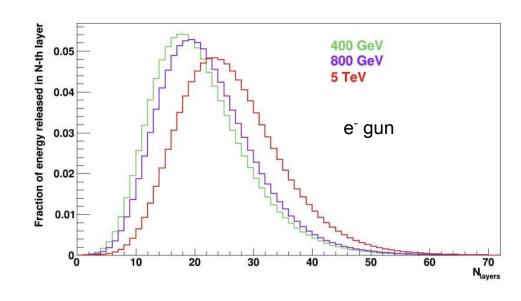
Monte Carlo simulator	MARS15	MARS15	FLUKA	FLUKA	FLUKA
Beam energy [GeV]	62.5	750	750	1500	5000
μ decay length [m]	$3.9 \cdot 10^{5}$	$46.7\cdot 10^5$	$46.7\cdot 10^5$	$93.5 \cdot 10^{5}$	$311.7 \cdot 10^{5}$
$\mu \mathrm{decay/m/bunch}$	$51.3 \cdot 10^{5}$	$4.3 \cdot 10^{5}$	$4.3 \cdot 10^{5}$	$2.1 \cdot 10^{5}$	$0.64 \cdot 10^{5}$
Photons $(E_{\gamma} > 0.1 \text{ MeV})$	170 ⋅ 10°	86 ⋅ 10°	$51 \cdot 10^{6}$	70 · 10°	$107 \cdot 10^{6}$
Neutrons $(E_n > 1 \text{ MeV})$	$65 \cdot 10^{6}$	$76 \cdot 10^{6}$	$110 \cdot 10^{6}$	$91 \cdot 10^{6}$	$101 \cdot 10^{6}$
Electrons & positrons ($E_{e^{\pm}} > 0.1 \text{ MeV}$)	$1.3 \cdot 10^{6}$	$0.75 \cdot 10^{6}$	$0.86 \cdot 10^{6}$	$1.1 \cdot 10^{6}$	$0.92 \cdot 10^{6}$
Charged hadroms $(E_{h^{\pm}} > 0.1 \text{ MeV})$	$0.011 \cdot 10^{6}$	$0.032 \cdot 10^{6}$	$0.017 \cdot 10^{6}$	$0.020 \cdot 10^{6}$	$0.044 \cdot 10^{6}$
$\mathrm{Muons}\;(E_{\mu^\pm}>0.1\;\mathrm{MeV})$	$0.0012 \cdot 10^6$	$0.0015 \cdot 10^6$	$0.0031 \cdot 10^6$	$0.0033 \cdot 10^6$	$0.0048 \cdot 10^6$

The straight sections of the collider complex have a unique potential to study high-energy neutrino scattering

- 10^5 / m / bunch x 100 m x 10^5 kHz x 10^7 s/year = 2 x 10^{19} neutrinos year
- Neutrino interaction probability 4 x 10⁻¹⁰ x [E/TeV] x [L/m] x [density/g cm^-3]
- At 1 km, the neutrino beam section will be O(10 cm)

Same as for forward tagger, we need to design / implement and evaluate the potential of such a detector

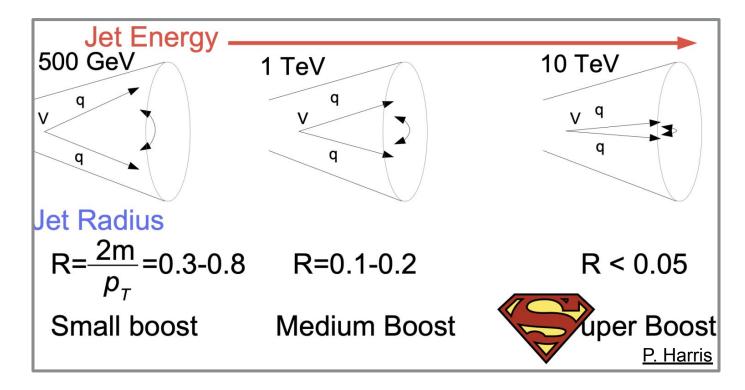
Towards 10 TeV


Towards a 10 TeV detector

The design of the 3 TeV CLIC detector is not suitable for 10 TeV

- Tracker layout and magnetic field strength might need an optimisation (beyond the MDI)
- The calorimeters can't fully contain the showers
- Not obvious that a high-precision muon system is needed (at least in barrel region)

Start with simplified studies based on particle guns shot on simplified geometries to define layout and technology.


Refine and integrate later

Towards 10 TeV reconstruction

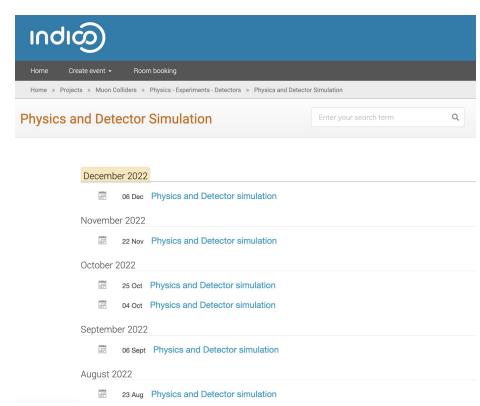
The reconstruction algorithms that we designed (or simply inherited) at 3 TeV are not guaranteed to work at 10 TeV.

- Significantly different energy regime
- Higher detector granularity might require new approaches
- Different BIB and MDI

Come to our meetings!

Advertise your work

Get feedback


Keep the community informed

Find partners to turn your framework contribution into a public result

Tuesdays at 16:00 CERN

https://indico.cern.ch/category/13145/

 Alternating between general and technical meetings

Thank you!